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Spherically symmetric clusters of charged particles 

A Banerjee and D Bhattacharya 
Department of Physics, Jadavpur University, Calcutta 700032, India 

Received 28 November 1977 

Abstract. I t  is shown that the Reissner-Nordstrom singularity is unattainable in the case of 
a stationary spherically symmetric cluster of charged particles with a motion analogous to 
that of an Einstein cluster. It  is further shown that photons or neutrinos moving radially 
outwards inside the system cannot be trapped within the cluster itself. 

1. Introduction 

Einstein (1939) has shown that a spherically symmetric stationary cluster of many 
gravitating masses describing circular orbits may be constructed. The particles are 
assumed to move with perfectly arbitrary phases and orientations under the influence of 
the gravitational field produced by all of them. An interesting result of this work is that 
the particles at the boundary in such a case are constrained to move beyond a certain 
critical distance; this leads one to the conclusion that there is a limit to the concen- 
tration, so that the Schwarzschild singularity is unattainable in this case. 

The object of this paper is to investigate whether there is any such restriction on the 
radius of the cluster when the orbiting particles are charged. I t  is found that there is 
indeed a limit to the size of the cluster for a given total mass and charge, so that the 
Reissner-Nordstrom singularity does not appear at the boundary. 

In the second part of the paper ( 0  3) it is further shown that neutrinos or photons 
travelling along the paths of null geodesics in the outward direction inside the 
distribution must reach the surface in all cases; in other words there is no  trapping of 
such particles moving in the outward direction within the cluster itself. This result is 
exactly identical to that obtained in the case of uncharged particles (Hogan 1973). 

2. The energy-momentum tensor and the field equations 

The gravitational field of the cluster has spherical symmetry about a centre and each 
particle describes its orbit under the influence of this field, the effect of collisions 
between particles being neglected. Since the particles carry charge, there will be an 
electric field in the radial direction only. 

Now the gravitational field within the spherically symmetric cluster is given by 

ds2 = e' dt2 -eh dr2 - r2 de2  - r 2  sin2 0 d d 2  (1) 

where A and Y are functions of r alone and r 6 a.  r = a gives the boundary of the system. 
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Since there is only a radial electric field, the only non-vanishing component of F”“ is 
F14. Maxwell’s equations Fr i  = 4 r j ”  leads us to 

r for p = 1 (2) F 14 =-A(r)/e(”’”’/2 

and 

for CL = 4 ( v + A ) / 2  2 j4 = A’(r ) /4r  e r (3) 

where A(r)  is an arbitrary function of r and j ”  is the four-current density. I t  should be 
remembered that because of the spherical symmetry the only non-vanishing component 
of j ”  is j 4 .  j ’  = j 2  = j 3  = 0 since the charged particles have no radial motion and rotate 
perfectly at random. At any point within the cluster they move in tangential directions 
with the same speed, the same number of particles moving in all directions. The charge 
density is thus given by 

u2 = j w j F ,  

so that 
A / 2  2 4 ~ u = * A ’ ( r ) / e  r . (4) 

Therefore, in  view of the static spherically symmetric nature of the metric, the matter 
and the electromagnetic field may be given by (Teixeira and Som 1974) 

T r  =po[O,  -;a2, -;a2, (1 + a 2 ) ]  ( 5 )  

and 
1 2 3 4 2 4  4 m 1 =  - 4 m 2  = -4rr3 = 4 m 4  = A /2r 

where Tr and 7:: represent energy tensors for matter and the electromagnetic field 
respectively. po= T and a is a function of r alone. 

One can write the field equations 

G: = e-“ (r-2 - A ’r-’) - r-2 = -8rpO( 1 + a 2 ,  - (A2/r4) 

G: = G: = e-“ (2rv”+ rvt2 + 2v’ - ruth’ - 2A‘)/4r = 4rp0a2  + (A2/r4) 

( 7 )  

(8) 

(9) 

G: = e-A(r-2 + v‘r-l) - rP2 = - ( A ~ /  r4) 

where G’t is the Einstein tensor given by 

Gr =RE - ; 8 f R .  

The Bianchi identity gives 

po[a2r-l - f v ‘ ( l  + a 2 ) ] =  - ( ~ ~ ) ’ / 8 r r ~  

Here a prime indicates differentiation with respect to r. Since A2(r)  has the significance 
of the square of the charge integral within the sphere of radius r (see Bekenstein 1971), 
(A’)’ > 0 for charges of the same sign. 

In view of the above fact, the relation (10) shows immediately that v’>O which, 
combined with the field equation (8), yields the relation 

e A ( l - A 2 / r 2 ) s l .  (11) 
Now for regularity at the origin, as r -, 0, e“ + 1 and one may further conclude, in view of 
(4), that A2/r’+0 as r -0  for a finite value of the charge density at this point. The 
relation (8) therefore tells us that v‘r vanishes at the origin. 
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Now we can write the Bianchi identity (10) in the form 

a (1 -2v’r) =~v’r-((A2)’/8.rrpor3).  (12) 

One  has to conclude that :v‘r cannot be greater than one  at  the boundary, since in that 
case it would be exactly equal to unity somewhere within the cluster, and tv’ r  = 1, in 
view of (12), means that a is of infinite magnitude. a + 00 again has the implication that 
the particle reaches the velocity of light at  this point; this can be seen from the equations 
of motion of any of the charged particles of the cluster in the following way. 

2 1  

By putting CL = 1 in the equation of motion 

for a particle moving in the plane f3 = 1~ one  obtains 

po e-” [r(d4/ds)’ - e ” ( d r / d ~ ) ~ & ’ ]  = -(A2)’ e-”//877r4. 

e”(dr/ds)2 - r2(dq5/ds)2 = 1. 

(14) 

Also from (l), 

(15) 

Equations (14) and (15) now give 

(16) 

Comparing the velocities of a particle and a light ray traversing circular paths in the 
plane 8 =&r where U’ e-” is equivalent to the ratio of the square of the velocity of a 
particle to the square of the light velocity (Gilbert 1954) and using (12) and  (16) 
we get the relation 

(18) 

So when a +CO, (r2/(1 + a 2 )  + 1 and the velocity of the particle approaches the velocity 
of light. 

So finally we obtain the condition that iv‘r  < 1 at the boundary and from (1 1) we get 
the inequality 

(19) 

- - 1 - ((A2)’/8,irr3po) 
d s  1 - iv’r  

U’ e-“ = (r2/(1 +a2) .  

1 < e”(‘(I’(1 - Q 2 r i 2 )  < 3 

where A (ro) is the value of A at  r = ro and Q is the total charge content of the cluster. The  
relation (19) can also be written in a more explicit form utilising the exterior Reissner- 
Nordstrom solution as 

1 - 2 M r i ’  + Q 2 r i 2  1 >--. 
3 

1 3  
1 - Q 2 r i 2  

Now in order that the event horizon appears at  the boundary for M > / Q I ,  ro must 
approach M + ( M 2 -  Q’)”’, which is greater than 101. Thus (1 - Q 2 r i 2 )  remains 
positive and finite, whereas (1 - 2MrO’ + Q 2 r i 2 )  vanishes, which contradicts (20). 

Again for M2 = Q2, the relation (20) reduces to 
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So the event horizon appears at  the boundary r = ro when ro approaches M ( = a ) .  In 
that case 

which is again inconsistent with (21). Thus for fixed M and IQ/, one  can decrease the 
dimension of the cluster only up to a certain limit of concentration without the event 
horizon appearing at  the boundary of the cluster at  any stage. Equation (20) leads 
directly to bounds on  ro, that is, on  the dimensions of such a cluster, by the relations 

ro 2 Q2/M ( 2 2 ~ )  

1-3MrO’ + 2 Q 2 r i 2  > 0. (22b) 

and 

The  second condition in fact yields the relation r i >  Q 2  in view of the first. 

3. Emission of neutrinos 

It is well known that the equations of motion of neutrinos are given by null geodesics 
and such paths within the cluster under consideration are given by 

(23) 

where a and p are constants of motion. The  dot represents differentiation with respect 
to some affine parameter. Thus from (23) one  obtains (Hogan 1973) 

2 ’  evi2-eAi2-r2$2= 0 ,  r d = a ,  e”; = ap 

(dr/dr$)2 = (p2-e”r-2). (24) 
r-4 e l A + v )  

Such paths have apses when eYrY2 = p 2  at some r. Again 

(d/dr)(e”r-2) = 2 e ’ ~ - ~ ( t v ’ r  - 1). (25) 
Since it has been argued earlier that within the cluster tv’r < 1 we get (d/dr)(e”r-2) < 0 
and so once the neutrino is emitted from any point within the cluster in the outward 
direction, it does not turn within the cluster, because with increasing r the quantity eyr-2 
continues to decrease and cannot be equal to p 2  before the neutrino reaches the surface. 
O n e  may therefore conclude that even when the particles in an Einstein cluster are 
charged, the outgoing photons o r  neutrinos cannot be trapped within the cluster. 
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